Peramalan
Peramalan (forecasting) merupakan suatu proses perkiraan keadaan pada masa yang akan datang dengan menggunakan data di masa lalu (Adam dan Ebert, 1982). Awat (1990) menjelaskan bahwa peramalan merupakan kegiatan untuk mengetahui nilai variabel yang dijelaskan (variabel dependen) pada masa akan datang dengan mempelajari variabel independen pada masa lalu, yaitu dengan menganalisis pola data dan melakukan ekstrapolasi bagi nilai-nilai masa datang.
Metode peramalan kuantitatif dijelaskan Supranto (2000) terdiri dari metode pertimbangan, metode regresi, metode kecendrungan (trend method), metode input output, dan metode ekonometrika. Metode kecendrungan (trend method) menggunakan suatu fungsi seperti metode regresi dengan variable X menunjukkan waktu. Tepat tidaknya peramalan ditentukan oleh kriteria yaitu berkaitan dengan goodness of fit yang menunjukkan bagaimana model peramalan dapat menghasilkan peramalan yang baik. Selain itu ada tiga kriteria yang perlu untuk dipertimbangkan, yaitu:
1) Pola data;
2) Faktor biaya peramalan; dan
3) Faktor kemudahan.
Penentuan ketepatan peramalan pada umumnya berdasarkan beberapa metode, yaitu nilai Sidik Ragam (F-Test), Koefisien determinasi, Kuadrat Tengah Galat (Mean Square Error (MSE), dan Persentase Galat (Percentage Error (PE)).
Deret Waktu
Deret waktu adalah kumpulan data-data yang merupakan data historis dalam suatu periode waktu tertentu. Data yang dapat dijadikan deret waktu harus bersifat kronologis, artinya data harus mempunyai periode waktu yang berurutan. Misalnya data penjualan suatu perusahaan antara tahun 2006-2011, maka datanya adalah penjualan tahun tahun 2006, tahun 2007, tahun 2008, tahun 2009, tahun 2010, dan tahun 2011.
Data runtun waktu (time series) merupakan data yang dikumpulkan, dicatat, atau diobservasi sepanjang waktu secara berurutan. Periode waktu dapat menggunakan tahun, kuartal, bulan, minggu, hari atau jam. Runtut waktu dianalisis untuk menemukan pola variasi masa lalu.
Analisis deret waktu (time series analysis) dipakai untuk meramalkan kejadian di masa yang akan dating berdasarkan urutan waktu sebelumnya. Ada beberapa teknik untuk meramalkan kejadian di masa yang akan datang berdasarkan karakteristik data, misalnya teknik smoothing, teknik siklus, dan teknik musiman.
Trend
Trend adalah pergerakan jangka panjang dalam suatu kurun waktu yang kadang-kadang dapat digambarkan dengan garis lurus atau kurva mulus. Deret waktu untuk bisnis dan ekonomi, yang terbaik adalah untuk melihat trend (atau trend-siklus) sebagai perubahan dengan halus dari waktu ke waktu.
Pada kenyataannya, anggapan bahwa trend dapat diwakili oleh beberapa fungsi sederhana seperti garis lurus sepanjang periode untuk time series yang diamati jarang ditemukan. Seringkali fungsi tersebut mudah dicocokkan dengan kurva trend pada suatu kurun waktu karena dua alasan, yaitu fungsi tersebut menyediakan beberapa indikasi arah umum dari seri yang diamati, dan dapat dihilangkan dari seri aslinya untuk mendapatkan gambar musiman lebih jelas.
Ada tiga trend yang diigunakan untuk meramalkan pergerakan keadaan pada masa yang akan datang, yaitu:
1. Trend Linier
Sering kali data deret waktu jika digambarkan ke dalam plot mendekati garis luruus. Deret waktu seperti inilah yang termasuk dalam trend linier. Persamaan trend linier adalah sebagai berikut:
Dengan nilai a dan b diperoleh dari formula:
Dimana Yt menunjukan nilai taksiran Y pada nilai t tertentu. Sedangkan a adalah nilai intercept dari Y, artinya nilai Yt akkan sama dengan a jika nilai t = 0. Kemudian b adalah nilai slope, artinya besar kenaikan nilai Yt pada setiap nilai t. Dan nilai t sendiri adalah nilai tertentu yang menunjukan periode waktu.
Trend Linier Positif
2. Trend Kuadratik
Jika trend linier merupakan deret waktu yang berupa garis lurus, maka trend kuadratik merupakan deret waktu dengan data berupa garis parabola.
Trend Kuadratik
Dengan nilai a, b, dan c diperoleh dari:
3. Trend Eksponensial
Untuk mengukur sebuah deret waktu yang mengalami kenaikan atau penurunan yang cepat maka digunakan metode trend eksponensial. Dalam metode ini digunakan persamaan:
Tetapi dalam melakukan perhitungannya, persamaan di atas dapat diubah ke dalam bentuk semi log, sehingga memudahkan untuk mencari nilai a dan b.
Trend Eksponensial
4. Memilih Trend Terbaik
Untuk membuat suatu keputusan yang akan dilakukan di masa yang akan datang berdasarkkan deret waktu diperlukan suatu metode peramalan yang paling baik sehingga memiliki nilai kesalahan yang cenderung kecil. Terdapat beberapa cara untuk menentukan metode peramalan mana yang akan dipilih sebagai metode peramalan yang paling baik, diantaranya Mean Square Error (MSE).
Untuk mencari MSE digunakan rumus sebagai berikut:
Dimana nilai e adalah selisih antara nilai Y dengan peramalan (Yt). Model yang memiliki MSE paling kecil adalah model persamaan yang paling baik.
CONTOH KASUS
.............Penjualan Produk X pada tahun 2010 adalah sebagai berikut:
Waktu
|
Bulan
|
Penjualan
|
1
|
Januari
|
1143
|
2
|
Februari
|
1037
|
3
|
Maret
|
857
|
4
|
April
|
757
|
5
|
Mei
|
948
|
6
|
Juni
|
660
|
7
|
Juli
|
683
|
8
|
Agustus
|
809
|
9
|
September
|
1078
|
10
|
Oktober
|
696
|
11
|
November
|
777
|
12
|
Desember
|
672
|
Jumlah
|
10117
|
Tentukan peramalan penjualan pada bulan ke-18 dan bulan ke-25!
Penyelesaian
Dari tabel di atas akan dibuat deskripsi data ke dalam bentuk poligon agar dapat memudahkan menganalisis data. Berikut ini adalah poligon data dari data hasil penjualan produk X pada tahun 2010:
1) Trend Linier
Dari tabel tabulasi data di atas, maka diperoleh:
Setelah itu masukan nilai a dan b ke dalam persamaan Yt = a + bt , sehingga menjadi sebuah persamaan trend linier Yt = 843,08+ 13.t.
2) Trend Kuadratik
Setelah itu nilai a, b dan c dimasukan ke dalam persamaan Yt = a + bt + ct2 , sehingga menjadi sebuah persamaan trend kuadratik Yt = 790,65 + 13.t + 1,1.t2.
3) Trend Eksponensial
Setelah itu nilai a dan b dari hasil perhitungan di atas dimasukan ke dalam persamaan Yt = a.bt , sehingga menjadi sebuah persamaan trend eksponensial Yt = 828,58 + 0,99t.
C. Ketepatan Model Peramalan
1) Trend Linier
2) Trend Kuadratik
Data pengamatan runtun waktu untuk perubahan hasil penjualan produk X di tahun 2010 setiap bulannya, dapat diketahui bahwa perubahan nilai runtut waktu pengamatan dari bulan ke bulan jumlahnya cukup bervariasi berupa peningkatan dan penurunan.
Jumlah penjualan tertinggi terjadi pada bulan Januari sebanyak 1143. Penurunan penjualan tertinggi terjadi pada bulan Juni sebanyak 660. Keterangan tersebut memperlihatkan perubahan nilai runtun waktu pengamatan yang fluktuatif.
Sebelum dilakukan perhitungan, akan dihitung Mean Square Error (MSE) terlebih dahulu. Hal ini dilakukkan untuk mencari trend mana yang paling tepat dan memiliki kesalahan terkecil untuk dijadikan acuan peramalan. Berikut ini adalah perhitungan MSE dari trend linier, trend kuadratik, dan trend eksponensial:
1) MSE Trend Linier
2) MSE Trend Kuadratik
3) MSE Trend Eksponensial
Dari perhitungan MSE di atas, bahwa nilai MSE dari trend kuadratik merupakan yang terkecil. Jadi dapat diketahui bahwa trend kuadratik pada peramalan ini memiliki kecendrungan kesalahan yang paling rendah dibanding dengan trend linier dan trend eksponensial.
Berikut ini adalah poligon dari permalan penjualan produk X.
Dari perhitungan menggunakan trend kuadratik di atas, maka dapat diramalkan penjualan produk X pada bulan ke-18 adalah sebanyak 1074, dan untuk bulan ke-25 sebanyak 1816. Dapat dilihat pada kurva di atas, pada bulan ke-12 sampai dengan bulan ke-25 terlihat bahwa jumlah penjualan produk X dari bulan ke bulan mengalami peningkatan.
like this...........
ReplyDeletethanks,,
Deleteterima kasih :D
ReplyDeletemakasih gan....saya bingung yang trend kuadratik...
ReplyDeleteMasih gak ngerti gan,,
ReplyDeleteqo nilai MSE trend kuadratik yang nilainya terkecil (16210.06)??
kan trend linear yang paling terkecil (1835.91)
thanks..
Delete@Mayaa_Ciamik buat trend kuadratik MSE seharusnya
220234,91 / 12 = 18352,91
jadi, yang dipake tetap trend kuadratik, karena punya MSE paling kecil..
mau tanya itu nilai ti nya darimana ya? muali dari -11 sampai 11?
ReplyDeletemau tanya itu nilai ti nya darimana ya? muali dari -11 sampai 11?
ReplyDeletethx gan,.. minta reverensinya dong
ReplyDeleteArtikel ini sangat bermanfaat, tetap semangat dalam menulis dan kami tunggu artikel selanjutnya. Jika berkenan silahkan kunjungi balik blog kami yang membahas tentang soal-soal psikotes dan panduan lulus seleksi kerja.
ReplyDeleteI think that thanks for the valuabe information and insights you have so provided here. visit link:
Info Lowonga Kerja Terbaru,
Lowongan Kerja Bank Indonesia (BI),
Lowongan Kerja Bank BRI,
Lowongan Kerja Bank BNI,
Lowongan Kerja Bank Mandiri,
Lowongan Kerja Bank BTN,
Contoh soal psikotes kerja,
Contoh soal psikotes Terbaru,
Contoh Soal Psikotes dan Jawabannya,
Contoh soal psikotes deret gambar,
Contoh soal psikotes kraepelin pauli,
Contoh soal TPA,
Contoh soal psikotes warteg (gambar),
Tes IQ Online,
Contoh soal CPNS,
Soal-soal Psikotes,
Soal Tes IQ,
Tes IQ Online
Cara cepat hamil,
Artikel Pendidikan di Indonesia,
Daftar Blog Dofollow Auto Approve Terbaru ,
Tips mengerjakan soal TPA masuk SMA,
Menjawab pertanyaan wawancara kerja Apa Kelemahan Anda,
Cara negosiasi gaji,
Contoh surat lamaran kerja,
Contoh CV yang menarik perhatian HRD,
Cara Membuat Blog Gratis Tanpa Ribet
terimakasih sudah berbagi.
itu t1 bisa -11 dapat dari mana?
ReplyDeleteY linear dan e linear dpt darimana?
ReplyDeleteY linear dan e linear dpt darimana?
ReplyDeletey linear itu dari model yt = 843.08 + 13t, dimana t nya dimasukkan satu per satu
Deletee linear = yi - y linear
y linear itu dari model yt = 843.08 + 13t, dimana t nya dimasukkan satu per satu
Deletee linear = yi - y linear
gan mau tanya itu asal ti -11 sampai 11 itu dari mana ya? mohon pencerahannya
ReplyDeletedimulai dari tengah, karena itu genap (n=12, tidak ada titik tengah), jadi 2 data yang tengah diisi dengan -1(atas) dan 1(bawah) dan selisihnya 2, yang atas min dan yang bawah plus. Kalo genap, titik tengahnya 0, dan selisihnya 1.
DeleteContoh genap:
N ti
1 -5
2 -3
3 -1
4 1
5 3
6 5
Contoh ganjil:
N ti
1 -2
2 -1
3 0
4 1
5 2
Makasih udah share ilmunya gan..
ReplyDeleteThis comment has been removed by the author.
ReplyDeleteMakasii udah share ilmunya ^^, kalau bisa ditambahkan juga sumber referensinya, terimakasih.. :)
ReplyDeletesangat bermanfaat gan, thx . kalo bisa boleh minta referensinya? buku/ jurnal?
ReplyDeleteGan cara buat grafiknya itu kaya mana yg trend linier
ReplyDeletetrims gan... semoga bermanfaat
ReplyDeletebang boleh share link referensinya ?
ReplyDeletegan mau nanya hasil akhir yang bulan ke 18 dan 25 ,dapet t18=23 dan t25=37.itu bagaimana?
ReplyDeleteNilai tersebut didapatkan dari perpanjangan nilai t.i, gan. Yang mana nilai t.i dapat dilihat pada penyelesaian bagian A, pada tabel tabulasi data. Yang mana nilai t1=-11, t2=-9, t3=-5, dan seterusnya
Deletekalau penjualan ada dibeberapa lokasi misal dikota depok, bogor, bekasi, bagaimana mengitung model pertumbuhannya.. Apakah secara keseluruhan ataukah dihitung perkota..
ReplyDeletegan mau tanya alasan kenapa konsep t.i bisa digunakan dalam peramalan ini? mohon dibalas ya gan
ReplyDeletegimana sih yg eksponensial rumusnya
ReplyDeleteYt = a.b^t
kok jadi Yt = 828,58 + 0,99^t
harusnya kan Yt = 828,58 x 0,99^t
apakah peramalan untuk jangka panjang bisa dilakukan apabila data yg didapat hanya sedikit ? mis: didapat data setahun untuk peramalan 10 tahun
ReplyDeletehalo ka, apakah trend linier, trend kuadratik dan trend eksponensial ini, nama lainnya adalah regresi linier,regresi kuadratik dan regresi eksponensial?
ReplyDeleteka boleh sertakan sumber referensi? aku lagi penelitian skripsi, butuh sumber valid.. terimaksih
ReplyDeletekk izin copy untuk materi kuliah terima kasih
ReplyDeleteTerimakasih ilmunya kak
ReplyDeleteBro ini apa? Ngga jelas woi iiii, -1 rep for untuk, damn shit
ReplyDeletemohon pencerahannya untuk Ylinier (model peramalan linier) jika Yt = 843,08+13t , dan jika dimasukan t nya sebagai contoh -11 , hasilnya akan Yt = 843,08+13*-11 maka Yt = 700,08 , kok hasilnya jadi 986,08 . tolong bisa diberikan pencerahan agan2 yang pintar
ReplyDeleteKak. Kalau untuk peramalan dengan metode konstan gmana ?
ReplyDeletehmm permisi lur, izin nanya. untuk pencarian Ti itu bagaimana ya?
ReplyDeleteeh kak, kok ditempat saya buat yang eksponensial malah begini ya 𝑦′=𝑎∙𝑒^b.t
ReplyDeleteduh bingung yang bener yang mana
b=-13
ReplyDelete